Th I (Uniform Combining Th). Let
$$A \subseteq |\mathbb{R}$$
 be bounded,
or closed ($x_{0} \in A$ whenever $z_{0}^{e^{\mathbb{R}}}$ is the limit of some
seq in A). Then $f: A \rightarrow |\mathbb{R}$ is its iff it is unif. its.
 $Pf. \notin Trivial \implies Use the B - W Th 4 seq. within for its.Th 2. Let $A \subseteq |\mathbb{R} \notin Ut f: A \rightarrow |\mathbb{R}$ be unif. its.
This it maps any Camby degits a Camby deg.
(the converse is not true).
[See Th 2* (b) below.]
Th 2*: Let $\emptyset \notin A \subseteq |\mathbb{R} \notin f: A \rightarrow |\mathbb{R}$. Each
of the following cases ((a), (b)) implies that
f maps every Camby deg is a Camby seq :
(a) A is closed & f is A to a Camby seq :
(b) f is unif. its .
proof (b). Implies that f is a camby seq :
(a) A is closed & f is its .
(b) f is unif. its .
(c) A is closed & f is its .
(c) f is unif. its and and
wish to show that (f(xn)) is Camby. We
Wish to show that (f(xn)) is Camby. To do
this, let $2 \ge 0$. Since f is unif. its, $f \ge 700$ s.t.
(f) $x, u \in A + |x-u| < \delta \implies |f(x) - f(u)| < \epsilon$.
Firstwise, $f = N \in \mathbb{N}$ s.t$

(#)
$$|X_n - X_{nn}| < \delta \quad \forall \quad m, n \geq N$$
.
and it follows from (*) that
 $\int (X_n) - \int (X_m) \langle E \; \forall \; m, n \geq n \rangle$
(noting $X_n \in A \; \forall \; k \rangle$. The $(f(X_n))$ is nideed a
Country seq.
(6). Suppose A is closed $4 \; f$ its. Let (X_n) be
a seq n : A . By Completines \mathcal{O} , $X_n \rightarrow x \in \mathcal{R}$
for some x . Sinve A is closed, doing x belongs to A
for some x . Sinve A is closed, doing x belongs to A
for some x . Sinve A is closed, doing x belongs to A
for some x . Sinve A is closed, doing x belongs to A
for some x . Sinve A is closed, doing x belongs to A
for some x . Sinve A is closed, doing x belongs to A
for some x . Sinve A is closed, doing x belongs to A
for some x . Sinve A is closed, doing x belongs to A
for $(A_n) \rightarrow f(x)$ and hence $(f(X_n))$ is C and f .
(my conv. seq. is County). Let $f: (a, b) \rightarrow iR$ be
This (Unif. Ch. Extension). Let $f: (a, b) \rightarrow iR$ be
This (Unif. Ch. Extension). Let $f: (a, b) \rightarrow iR$ be
inif. its . Then it combe extended unif. contain onsign
(a, b) convergent to x_0 . Since (X_n) is C and f
and f is unif. its $m(x, b)$ it follows from Th 2
theorem (f(X_n)) is C and g and hence converges:
we denote the limit by $f(x_0)$. This is mult-defined
and f is then its out x_0 . To show this, it is

sufficient (by sey within) to show that

$$\lim_{N} f(y_n) = f(x_0)$$
where (y_n) is another seq in (x,b) convergent to x_0 .
We note that the "combined seq" $(m(a,b))$
 $x_1, y_1, x_2, y_2, x_3, y_3, --$
also converges to x_0 (so Camby) and hence
(by Th 2 again)
 $f(x_1), f(y_1), f(x_2), f(y_3), f(y_3), f(y_3) --$
is also Camby and hence converges to a limit
which should be equal to the limit of v_0
subsequences, so to $f(x_0)$, consequently is us at x_0 .
 $f(y_1) = \lim_{N} f(x_1) = \lim_{N} mf(y_1)$.
Thinkly, by $TA(1, y_1) = \lim_{N} mf(y_1)$.
Thinkly, by $TA(1, y_1) = \lim_{N} mf(y_1)$.
Thinkly to a to $(x_0 - x_0)$.
 $f(x_0) = \lim_{N \to \infty} f(x_0) = \lim_{N \to \infty} mf(y_1)$.
Thinkly to $TA(1, y_1) = \lim_{N \to \infty} mf(y_1)$.
Thinkly to $TA(1, y_1) = \lim_{N \to \infty} mf(y_1)$.
This is consequent seq in A_3 .
(Mom $A \subseteq \overline{A}$ - by looking constant seq). Then
 $each unif. contains on A cambe extended
 $unif. contains = K.$ (Whit : Similar and TA_3).$